

ХИМИЧЕСКИЙ АНКЕР **ВІТ-ЕА**

Описание

Высокоэффективный двухкомпонентный химический состав для анкерных креплений на основе синтетической быстроотверждаемой эпокси-акрилатной смолы. Обладает пониженной вязкостью, что позволяет быстро и равномерно заполнять отверстия как больших, так и малых диаметров, обеспечивая наилучшее связывание и молекулярную адгезию с материалом основания.

Назначение и область применения

Специально разработан для осуществления анкерных креплений в тяжелом и легком бетоне, природном камне (мрамор, гранит и т.п.) с учетом физико-механических свойств, прочностных характеристик и коэффициентов температурного расширения данного класса строительных материалов.

Надежное крепление металлоконструкций к несущим монолитным фундаментам, подконструкций фасадных систем, лестниц (перила и поручни, стойки ограждения, косоуры), навесов и т.п.

Преимущества

- ▲ в качестве анкера можно использовать любые резьбовые шпильки, арматурные прутки, анкерные болты и штифты
- ▲ без ограничений допускается применение в основаниях из различного вида кирпича, ячеистого бетона и пустотелых материалов
- ▲ не создает напряжения в материале основания
- ▲ возможно приложение высоких нагрузок при малых расстояниях между осями креплений и от края конструкции
- ▲ применяется во влажных отверстиях
- ▲ высокая устойчивость к агрессивным средам, кислотам и щелочам

Физико-механические характеристики

 применяется во влажных отверстиях высокая устойчивость к агрессивным средам, кислотам и щелочам Физико-механические характеристики 									
2/7 01,		H/mm²	KCC/CM2	мПа	Стандарт/норматив				
Прочность на сжатие	R_c	42,90	429,0	42,90	EN ISO 604/ASTM 695				
Прочность при растяжении	R_t	7,70	77,0	7,70	EN ISO 527/ASTM 638				
Прочность при изгибе	R_{f}	14,6	146,0	14,6	EN ISO 178/ASTM 790				
Модуль упругости	E _e	7831,2	78312,0	7831,2	EN ISO 527/ASTM 638				
Модуль деформации	E_f	2865,0	28650,0	2865,0	EN ISO 178/ASTM 790				
ЛОВ (VOC)	%		0,000		A+				

Рабочие характеристики

Температура основания (°C)	Время схватывания ¹ (минуты)	Время отверждения ² (минуты)
35	3 5 9 20 40 50 стие, возможно корректировать его поло	20 30 60 90
25	5	30
15	9	60
15 5 -5 ³ -10 ³	20	90
-5 ³	40	180
-10 ³	50	240
Полное отверждение состава, в Температура состава при инъец Внимание! Во влажных отверсти	40 50 стие, возможно корректировать его половозможно приложение нагрузки. цировании должна быть не менее +20°С. иях время отверждения увеличивается в	2 pasa.
7.50	nts	, td.
aLLIVA	1, 1, 191,	of Le
230	All	211
28BC	ig., 'L D.,	-22
46,	BIL	200
· mites	-02.7	10"
1701	@ 20	So : Uhis
BI.	1210	11119
12'6	15 165	A Air
MIN	: apro	17,0.
3211	11/19	80 - 17 O.
-02	4 N. 11VII	OBI.
108L	10.	022
117		-02
24 • БЕТОН, ТЯЖЕЛЫЇ	Й БЕТОН, ПРИРОДНЫЙ КАМІ	ed Ltd. r
		0 . 4//

Ltd. All rights reserved © 2022 Bir United

Химический состав

Синтетическая эпокси-акрилатная смола

Сертификаты

Техническое свидетельство ITB AT-15-6895/2016 (Институт строительной техники)

Техническое свидетельство Министерства строительства и ЖКХ РФ № 6004-20

Исследования прочности и деформативности ЦНИИСК им. В.А. Кучеренко (Москва)

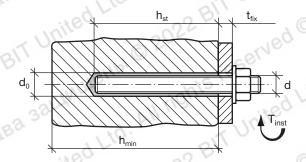
Сертификат соответствия POCC GB.HP15.H00093

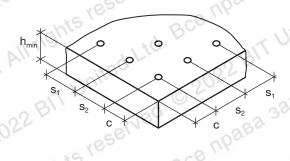
Испытания на морозоустойчивость (ЦНИЙСК им. В.А. Кучеренко)

2022 BIT United Ltd. Boe mpaga

United Ltd. All rights reserved

All rights


Экологическая маркировка А+ (выделение летучих органических соединений)



Геометрические характеристики и расход (тяжелый бетон В25, С20/25)

	Диаметр анкера, d (мм)	Диаметр отверстия, d _o (мм)	Диаметр отверстия в прикрепляемом элементе, d _f (мм)	Стандартная глубина заделки, h _{st} (мм)	Максимальный момент затяжки, Т _{inst} (Нм)	Расход хим. состава на 1 крепление (мл)	Количество і из 1 картри 400 мл	~ 1 1 / 1
3 (1)	M8	10	9	80	10	3,04	114	235
	M10	12	12	90	20	4,42	78	162
	M12	14	14	110	40	6,74	51	106
	M16	18	18	125	80	10,59	32	67
02	M20	22 (24)1	22	170	120	19,54 (31,82)	17 (10)	36 (22)
000	M24	28	26	210	160	49,11	~~~7	14
	M30	35	32	280	200	100,33	3	7///

¹ Возможно применение любого из указанных размеров.

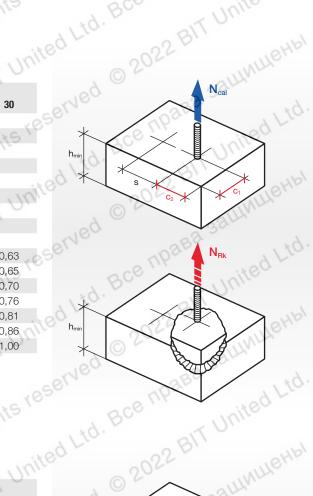
Эксплуатационные характеристики (стандартная глубина заделки — тяжелый бетон В25, С20/25)

Диаметр анкера,	$egin{aligned} \mathbf{M}\mathbf{a}\mathbf{\kappa}\mathbf{c}\mathbf{u}\mathbf{m}\mathbf{a}\mathbf{л}\mathbf{b}\mathbf{h}\mathbf{a}\mathbf{r} \\ \mathbf{h}\mathbf{a}\mathbf{r}\mathbf{p}\mathbf{y}\mathbf{s}\mathbf{k}\mathbf{a} \end{aligned} \begin{pmatrix} \mathbf{\kappa}\mathbf{H} \\ \mathbf{\kappa}\mathbf{r}\mathbf{c} \end{pmatrix}$		Расчетная (<u>кН</u> нагрузка		Стандартное от края	і ^і (мм)	Стандартное расстояние между осями анкеров¹ (мм)	
d (мм)	На вырыв, N _{Rk}	Ha срез, V _{Rk}	На вырыв, N _{cal}	Ha cpes, V _{cal}	На вырыв, с _{а,N}	На срез, с _{а,} v	На вырыв и срез, s _{bw}	
M8	19,00 1900,0	9,00 900,0	12,70 1270,0	7,20 720,0	80	80	160	
M10	28,20 2820,0	15,00 1500,0	15,70 1570,0	12,00 1200,0	100	90	200	
M12	39,02 3902,0	21,00 2100,0	21,68 2168,0	16,80 1680,0	120	110	240	
M16	56,11 5611,0	39,00 3900,0	31,17 3117,0	31,20 3120,0	160	125	320	
M20	87,59 8759,0	61,00 6100,0	48,66 4866,0	48,80 4880,0	200	180	400	
M24	110,04 11004,0	88,00 8800,0	61,14 6114,0	70,40 7040,0	240	220	480	
M30	153,06 15306,0	142,50 14250,0	85,03 8503,0	114,00 11400,0	270	280	540	
Несущая способ		пучае уменьшения	т стандартных рассто	ояний от края/мех	кду осями анкеров.	, BC	e '' Inited	
Необходимо учи	гывать соответствую	щие коэффициен	ты безопасности.	110	410	17,10.	alt	
2,50	MITTELL	n.	5	1 td. h.	1712	30.	022	
	SITTI	VII 410.	148	3 -	OIT UI	, ©	SOMME	
DaBa	1, 10		T Um	022	P.	-1780	22.30	
Uh	wited L	22	Br.	0 20	185	6,	a ubar	
Time	711.	02	21/8	1	100	BC	Mill	

Класс прочности резьбовой шпильки 5.8; **ХХХ** — предел прочности стали.

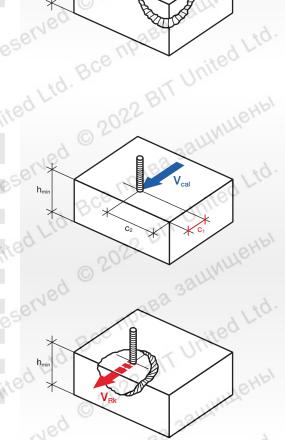
Крепление информационных терминалов к полу, выполненному из природного камня: мрамор и гранит (Московский метрополитен им. В.И. Ленина, Москва, 2012 г.)

Монтаж элементов конструкций ограждений и экспонатов выставочной коллекции (Музей техники Вадима Задорожного, Красногорский район Московской области, 2007 г.)



Несущая способность снижается в случае уменьшения стандартных расстояний от края/между осями анкеров. united Ltd. All

Необходимо учитывать соответствующие коэффициенты безопасности.

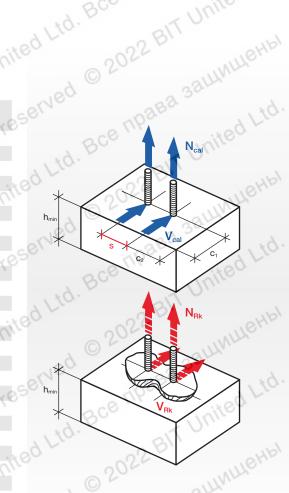

Коэффициент безопасности: при уменьшении стандартных расстояний от края при действии усилия вырыва

	Расст. от края, с (мм)	8	Коэффицие 10	ент безопасно 12	ости при дейс 16	твии усилия 20	вырыва, К _{аN} 24	30
	40	0,64	3. 1	-0	0		50-	
	50	0,73	0,63	00,50		29		. 35
	60	0,82	0,70	0,63	~ (100	A	Ollean
	70	0,90	0,77	0,68	,050		111	. 0
_	80	1,00	0,84	0,74	0,63		4. K.	
2,5	90	INV	0,91	0,80	0,67	7 /	0.	, 1
	100	300	1,00	0,86	0,71	0,63		17
	110		1 A. P	0,92	0,76	0,66	-08	2,
	120		Tio.	1,00	0,80	0,70	0,64	
00	140	136). T	02	0,89	0,77	0,67	0,63
	160	1011		00,50	1,00	0,84	0,72	0,65
	180		(0)	6	~ <	0,91	0,78	0,70
	200		ubl		.050	1,00	0,84	0,76
0	220	-11	SL	34	5 10	5-1	0,89	0,81
2.6	240	INV		n_{Di}		7 1	1,00	0,86
	270	30		11/12		460		1,00
	naBa.		, id. 1		-110	10	-0 8	5,
			Lion		317		00,50	
ce	1	1318	7.	-02	0.	, (C)	-	
		11410		200		00		n'is
	217		, O		-01	10	12 1	01,
	Козффил		зопасно		25		аппарти	

Коэффициент безопасности: при уменьшении стандартных расстояний от края при действии усилия среза

Расст. от края,	3.	Коэффици	ент безопасн	ости при дей	ствии усилия	среза, Кау	177
с (мм)	8	10	12	16	20	24	30
40	0,25	Lio	<	3/1		0.50	
50	0,44	0,30	-02		, (C)	-	97
60	0,63	0,48	0,30		0.0		nis'
70	0,81	0,65	0,44	-0.1	10	is	0,,
80	1,00	0,83	0,58	0,40		011,	
90	111	1,00	0,72	0,53	. *(. '	1
100	-17/1/1		0,86	0,67	0,35		110
110	0.1	0	1,00	0,80	0,44		17
125		.d. 1		1,00	0,58	0,35	5,
140	A	Lic	<	2/1	0,72	0,46	0,30
160	1360		02	0	0,91	0,62	0,35
180	11/10		200		1,00	0,77	0,46
200				0.1	10	0,92	0,57
220		eHp1		1050		1,00	0,68
240	111	SIL	101	5	200	1.	0,78
280	- ITAL		"idli		7 /		1,00
200	S.C.	AP	11112	. 10	1,60	0	317
108Ba	,	Lid.		17 UI		2022	
LIP	:400	1	02	31,	. (0)	50,	46
	1010		00.6		-09		15

Установка чугунных балясин и элементов ограждения непосредственно в пол без применения дополнительных переходников и муфт (минимальные расстояния от края конструкции)



Монтаж несущей рамы поэтажного эскалатора к железобетонным плитам перекрытия торгового центра (ТЦ «Галерея», г. Краснодар, 2011 г.) BCE MOBBB " rights reserv

BIT United Lta. Due Коэффициент безопасности: при уменьшении стандартных расстояний между осями анкеров при действии усилия вырыва и среза

	Van	4400		172		-022	v	-1760		20	
Расст. между осями, s (мм)	8 K03	ффициент ос 10	езопасности п 12	ри деистви 16	и усилия вырь 20	іва и среза, 24	Κ _{bw} 30	561		3.0	1 /3
40	0,64	10	0026	10	700	- 7	15 YE		- 08 /11		ited Li
50	0,67	0,63	120		100	A	dyra	\	Bo	N _{cal}	110
60	0.70	0,65	0,63	,e5e		V11 L	(3)	170		7/10	
70	0,73	0,67	0,64	100		121.		99 -			141
80	0.76	0,69	0,66	0,63	1 / 40), ·	ini.	*			11/64
90	0,79	0,72	0,68	0,64	ited -		17 01				\supset
100	0,82	0.74	0.70	0,65	0,63	~ 8	2/ /	h _{min}			/
120	0,87	0,79	0,74	0,68	0,65	0,63		*	* *	V _{cal}	*
150	0,96	0,86	0,80	0,73	0,68	0,65	0,63	Se'	C ₂	\ X \	
160	1,00	0,88	0,82	0,74	0,70	0,66	0,63		- 00	* "/	460
175	1,00	0,92	0,85	0,76	0,70	0,67	0,64		Bo	\\\(\)	110
200		1,00	0,90	0,80	0,74	0,69	0,66	1, 40			
225		1,00	0,95	0,84	0,77	0,72	0,68	97	_0	N _{Rk}	
240	MINI		1,00	0,86	0,79	0,73	0,69		2020		11/6/
250	7774		1,00	0,87	0,80	0,74	0,70		0 202		MIN
275		, P	77,	0,91	0,83	0,76	0,72	6.			
280		150.		0,92	0,84	0,77	0,72	*			
300	1,480		08	0,95	0,86	0,79	0,74	h _{min}	\searrow		
320	17/1/10		-02.7	1,00	0,88	0,73	0,76		-08	V _{Rk}	100
350),,	0	20-	1,00	0,92	0,83	0,78	*	1800	- PIK	100
400		. 6		- GC)	1,00	0,88	0,82	10%		21	
440		SKI		100	1,00	0,92	0,85	9/ /		10 /	
460	WIN		17/2		170	1,00	0,87	0	0020	\checkmark	1164
500	2177		11/19.		100	1,00	0.00		© 20°		MIT
540		, P	11	. 10	150	- 5	1,00	- 4		23/1	
340		Ltd. A		40,		22	1,00	served		22	MITTER
16.				21,	0	200		561	40	9.0	ited Li
эффици	енты ус	словий ј	работы г	три раз	ных кла	ccax бе	тона:		OG LIP		100 T
я резьбоі	вых шпі	илек и а	рматуры	период	цического	профи	ля		BCE TIP	, 10	110
21,		, 0		-8	_	- (CE0/60	dLid	© 2022	217 0.	
очность бетона		20 C20/25		C30/37 C		V.	5 C50/60	ed Lic	-0	BI.	
сжатая зона)	0,9	7 1,00	1,03	1,06	1,09 1,1	3 1,16	1,20	6	0020		1164
	3/17/		11 110.		ad L		7 DI.		0.70		MITT
очность бетона (сжатая зона)		, P	11,	110	1150	~ F	3/,	-9		331	
V31P		1,0.		17 0.		02.2		Men		23.	
16	600		08	2,,		500		56,	70	20	11
	Mile		02.6		70		16 16		- 68 /11		*60 L
17),	7 1,00	1,03		Ned Cr		dura	served led Lid	@ 2022 Bce mp	, 10	100
BII		141			\ -	11 11	19	1, 10		DIT O.	
2.6		SHI		100		bi.		og L	-0	PI	. 1
	MILL		- Mi		1 40). ,			-026		.167
					1 / "		. ////		011		

Коэффициенты условий работы при разных классах бетона: для резьбовых шпилек и арматуры периодического профит

Прочность бетона	C15/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60
f _c (сжатая зона)	0,97	1,00	1,03	1,06	1,09	1,13	1,16	1,20
- 21	TA.	, ,	4,01,		60	1		4 AU
CaBa 3au		, AI		, \	Nigo		0 B	, ,
TOSP	11	10.		217) -	00	22	
SUbar	1480		-02	D.		0,5		
~ Ur	110		50.0		160			n'is '
BII		~/ (C)			erveo		11 410	3,
02.2	1164	10.		216		. A.	Di.	
,,	MIT		.igh		A	Lio.		,10
ВНИМАНИЕ! Хим	ический (состав р	азработа	ан на ос	нове соб	бственно	й уникал	ьной тех

CTBEH. 1 Text ВНИМАНИЕ! Химический состав разработан на основе собственной уникальной технологии и является «ноу-хау» компании ВІТ United Ltd. Техническая информация о прочностных характеристиках, показателях несущей способности и коэффициентах безопасности приводится только для химических анкеров торговой марки ВІТ и не распространяется на продукцию других производителей.

Крепление заглубляемого ножничного автоподъемника к бетонному фундаменту (увеличение глубины заделки анкерных элементов из-за несоответствия прочности бетона, заявленной в проекте)

Антивандальное крепление банкоматов Сбербанка РФ (г. Ростов-на-Дону, 2015 г.)

